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Confidence intervals for logistic regression slopes
Two methods - correspond to the two test methods
Wald CI: (

β̂1 − z1−α/2 × se, β̂1 + z1−α/2 × se
)

= β̂1 +±z1−α/2 × se

For 95% interval, use z0.975 = 1.96
Donner: −0.0665± 1.96× 0.0322 = (−0.130,−0.0034)

Likelihood CI:
No simple expression, computed numerically
Donner: (−0.140,−0.010)
As with the tests, Likelihood makes fewer assumptions

These are intervals for the log odds ratio
Usually simpler to report (and interpret) intervals for odds ratios

Exponentiate the end points of the log odds intervals
Donner, Wald: (exp−0.130, exp−0.0034) = (0.88, 0.997)
Donner, Likelihood: (exp−0.140, exp−0.010) = (0.87, 0.990)

Reporting the association of age and P[surv]
If this were an experimental study, could say:

Increasing age by 1 year multiplies the odds of survival by 0.936, 95% ci (0.87, 0.99)

But this is an observational study, so can’t imply age reduced the survival

The odds of survival of an individual is 0.936 (95% ci: 0.87, 0.99) times that
for an individual one year younger.

The odds of survival of an individual is 1.068 (95% ci: 1.01, 1.15) times that
for an individual one year older

Multiple Linear Regression (MLR):
More than one X variable

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + εi

Three “hard” parts:
Interpretation of coefficients
Choosing the appropriate model comparison
Choosing a model to answer study questions

Plus some details (probably next week):
Standardized residuals:
Additional diagnostics: Cook’s D, VIF

And a major new topic: model selection (definitely next week)

Motivating example: Brain weights across mammal species, Chapter 9 Case study 2
Brain weight is positively associated with body size
Is it associated with other characteristics, e.g. gestation period or litter size?

After accounting for body size
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Plot the pairs of variables - see non-linear relationships
Log transform all variables

relationships now look like straight lines

Interpretation of coefficients
Intercept, β0: mean Y when all X variables = 0
Slope, βj: effect (or difference) when Xj increased by 1

and all other variables held constant
Estimated coefficients may depend on which other variables in model

Brain size case study: β for log litter size = -2.08 or -0.54 or -0.31
Answering different questions because holding different variables constant

SLR and MLR coefficients are the same only when X’s are uncorrelated

The “X” matrix:
Write Yi = β0 + β1X1i + β2X2i · · ·+ βkXki as a matrix multiplication: Y = Xβ + ε

X =

 1 X11 X21 · · · Xk1

1 X12 X22 · · · Xk2

1 X13 X22 · · · Xk2

 β =


β0
β1
β2
...
βk


Details of matrix multiplication not relevant
You need to know what the X matrix is, in case you read or hear about it
Point to know for later is that the intercept is an “X” variable with value = 1

Estimation, etc.: No new concepts, computers needed for almost all computation
Estimation: no simple non-matrix formula

betas: “simple” matrix expression, β̂ = (X
′
X)−1X

′
Y

Same equation for 5 variables or 500 variables - just more columns in X
Also works for SLR (1 variable, 2 columns in X)
Modern software uses the matrix approach even for SLR
Requires a computer for matrix inverse and matrix multiplication

error sd σ̂ = s =

√
Σ(Yi − Ŷi)2/(n− p)

p = # param, including intercept, so p = # X variables + 1
error df: n− p

Precision: simple matrix algebra expression, no simple formula
Var-Cov matrix of β̂ = s2(X

′
X)−1

Depends on spread in X values, # obs, correlation between 2 (or more) X’s
Inference: T tests on individual parameter - as usual

Or F test for Overall regression (next section)

Model comparisons:
Most of our model comparisons have been a full model vs intercept only

e.g., different means (full) vs equal means (only an intercept)
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One exception: ANOVA lack of fit: regression model vs different means model
When more than 1 term in the model, many possible model comparisons

Some more useful than others
Overall Regression: model comparison between full model and Yi = β0 + εi

Null hypothesis: all coefficients = 0, except intercept; β = 0, except β0
F test, often presented as an ANOVA table

F tests of individual terms:
More than one model comparison
Sequential tests: Type I SS and tests
Partial tests: type III SS and tests

Example: 3 X variables called A, B, and C: E Yi = β0 + β1Ai + β2Bi + β3Ci

Type I = sequential tests:
Drop in error SS when term added to model with “previous” terms

full model = previous terms + this one
reduced model = previous terms in equation

Term Reduced Full
A β0 β0 + β1Ai
B β0 + β1Ai β0 + β1Ai + β2Bi

C β0 + β1Ai + β2Bi β0 + β1Ai + β2Bi + β3Ci

Order of the terms in the equation matters
because each term added to preceding terms

Different order of variables: E Yi = β0 + β3Ci + β2Bi + β1Ai

Term Reduced Full
A β0 + β1Bi + β2Ci β0 + β1Ai + β2Bi + β3Ci
B β0 + β1Ci β0 + β1Ci + β2Bi

C β0 β0 + β1Ci

Two different tests for C
Different “previous” variables
Almost always different results
Same only when all X’s are uncorrelated with each other

Type III = partial tests:
Drop in error SS when term added

full model = all terms in model
reduced model = all other terms in equation (i.e. omitting this term)

Term Reduced Full
A β0 + β2Bi + β3Ci β0 + β1Ai + β2Bi + β3Ci
B β0 + β1Ai + β3Ci β0 + β1Ai + β2Bi + β3Ci
C β0 + β1Ai + β2Bi β0 + β1Ai + β2Bi + β3Ci
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Note: Type I test for last term in model always same as type III test

Sequential and partial described using SSE, for regressions with normally distributed errors
Linear regression (all terms have 1 df):

Type III F tests correspond to T tests on individual parameters
F statistic = (T statistic)2, have same p-value

Concepts of which models are compared apply to ANOVA models
when model has more than one term

Logistic regression:
one parameter: Type III model comparisons test same hypothesis as Z test
Answers are similiar but not identical

Difference between Wald and likelihood ratio (drop in deviance) tests

Type II:
Same as Type III when no interactions in the model

Interactions will be discussed soon
When there are interactions, type III preferred

My opinion: just use type III instead of type II
But some software calls it type II, even though it’s better known as type III test

Type IV:
There is also a type IV, has historical interest only.

Was developed for a specific difficult situation.
Missing cells in factorial ANOVA

Didn’t actually work as intended. Never used today

Which approach should I use?
When all X variables are uncorrelated, type I = type III

Very rare in regression problems
Does happen in ANOVA with equal sample sizes per treatment

US practice: use Type III tests almost all the time
These answer the most interesting questions
And, don’t have to decide the “correct” order of terms

ANOVA lack of fit: Type I because the sequence matters
regression, then means model. Other way around (means then reg) is junk

Some other parts of the world: Type I
Folks who designed the R lm/anova functions preferred type I
BEWARE: anova() gives you type I (sequential) tests

Output doesn’t tell you that you’re getting type I
probably not what you want

until a few years ago, hard to get type III tests from R
now: use functions in add-on libraries (emmeans, car, lmerTest)
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Fun with models (part 1): Constructing a model to answer various sorts of questions.
If you want to “control” for important confounding variables

Your focus is relationship between X1 and Y .
But you know that Y may be related to X2, X3,
Add X2, X3, ... to model
β1 is relationship between Y and X1 when all others held constant
Ex: litter size and brain weight, controlling for body weight,

All variables log transformed for linearity
log litter size = β0 + β1 log body weight + β2 log brain weight

Human nutrition:
Standard practice to include age, gender and sometimes BMI in models
Report results without those variables and with those variables in model

If you want to allow lines to curve (classical approaches):
quadratic regression:

Yi = β0 + β1Xi + β2X
2
i + εi

β2 quantifies the curvature (β2 = 0⇒ straight line)
Usual interpretation of β1 and β2 fails

Can’t change X while holding X2 constant
Test of β2 = 0 tells you whether straight line adequate
Max/min Y at Xm = −β̂1/(2β̂2)

se Xm is hard; ci or tests even harder
polynomial regression, if quadratic isn’t “wiggly” enough

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i {+β4X4

i · · · }+ εi

Much less frequently used; much harder to interpret coefficients
Mostly used for predictions within range of X.
Extrapolations beyond range of X are usually very “wild” and untrustable

If you want to allow lines to curve (modern approaches):
non-parametric regression

Yi = f(Xi) + εi

semi-parametric regression: Some X are curves, others are specified form

Yi = f1(X1i) + β2X2i + εi

Generalized additive model (GAM):

µi = f1(X1i) + f2(X2i) {+f3(X3i) . . .}

“Generalized”: Y may be normal, Bernoulli, Binomial, Poisson, and others
left-hand side may include transformations, e.g. log, logit
Called the link function

“Additive”: Effect of X1 added to that from X2 (and that from X3 . . .)
f(Xi) is an arbitrary function relating Yi to Xi.
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Oodles of ways to estimate f(), including
Splines
kernel smoothing
Support vector machines
Neural networks

(Feed forward NN, Convolution NN, Deep Learning, Multilayer Perceptron)
Data science studies all these, not in 587
All require a tradeoff:

Very smooth (e.g. straight line): simple model, may not fit well, large error SS
Very wiggly (e.g. connect-the-dots): complex model, fits very well, tiny error SS

Likely to fit too well, bad predictions of new observations
All require choosing a “tuning parameter”: balance between fit and complexity
All provide predictions of Y within the domain of X

Any may provide “wild” predictions when asked to extrapolate
My go-to: splines

Statistical theory to support a data-based tuning parameter
R: mgcv library, gam(Y ~ s(X1) + s(X2) + X3, family=binomial)

Combining groups and continuous predictor variables (version 1, 2 groups)
Define a new variable that indicates the group to which an observation belongs
Have observations from men and women; sex variable has the values “man” or “woman”

Define women = 0 when sex = ’man’ and women = 1 when sex = ’woman’
women is called an indicator variable: values of 0 or 1 indicate the group

Two identical models:
“T-test”: Yij = µi + εij
“regression on indicator variable”: Yi = β0 + β1womeni + εi

Predicted values from the regression:

Regression T-test
Group women mean mean
Man 0 β0 µman
Woman 1 β0 + β1 µwomen

Notice that β1 = µwomen − µman
Think about how this relates to the definition of the slope

and what increasing women by 1 “means”

Models with both groups (indicator variables) and continuous variables
ANCOVA: analysis of covariance

Yij = β0 + β1 groupi + β2 Xij + εij

i indicates groups, j observation within group
parallel lines

Heterogeneous regression lines

Yij = β0 + β1womeniβ2i Xij + εij
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each group (i) has a different slope Pictures on the board for ANCOVA and hetero-
geneous regression lines models

Interaction:
All previous regression models have had additive effects
Example: model with sex (indicator for female) and age (continuous)
Additive model: difference (female - male) = sex effect same for all ages

plot of Y vs age has two parallel lines (same difference at all ages)
Interaction:

difference (female - male) depends on age, not constant
In general, effect of one X variable depends on level of a second
Heterogeneous regression lines have an interaction

Can be an interaction between
a grouping variable (e.g. sex) and a continuous one (e.g., age)

so slope relating Y to age is different for M and F
other examples are light/flowering time, bat echolocation

two continuous variables (e.g., litter size and body weight)
so slope relating brain size to litter size depends on body weight

two grouping variables (e.g., sex and ethnicity)
So difference between sexes, M-F, is not constant, depends on ethnicity

Connecting regression and ANOVA (version 2, any number of groups):
ANOVA model: Yij = µi + εij

When k groups, k µi parameters. e.g. 3 groups, 3 µi parameters
Indicator variable:

X = I(something) means X =

{
1 when something is true
0 when something is false

So I(group = ’b’) is 1 when the group = ’b’ and 0 when the group = ’a’ or ’c’
Define 3 indicator variables, one for each group:
X1i = I(i’th obs has group =’a’),
X2i = I(i’th obs has group =’b’),
X3i = I(i’th obs has group =’c’)

Fit the model Yi = β1X1i + β2X2i + β3X3i + εi (Note: no β0, so no intercept)

group X1i X2i X3i predicted value
a 1 0 0 β1 = µa
b 0 1 0 β2 = µb
c 0 0 1 β3 = µc

Add an intercept to previous model
Write as a regression using a column of 1’s for β0
Model is Yi = β0X0i + β1X1i + β2X2i + β3X3i + εi
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group X0i X1i X2i X3i predicted value
a 1 1 0 0 β0 + β1 = µa
b 1 0 1 0 β0 + β2 = µb
c 1 0 0 1 β0 + β3 = µc

Nasty numerical problem: X has 4 columns, but 1 is redundant
Choose any three, fourth can be computed from them. fourth is not new information.
Called a “non-full rank” X matrix

Can not use the matrix equation β̂ = (X
′
X)−1X

′
Y because X

′
X has no unique inverse.

Errors/warnings like “X
′
X matrix is singular” are telling you this

Software “fix” the problem differently
R: Drop the column for first group (X1). Remaining three are full rank.

Can tell R to use other approaches, see contrasts() documentation,
especially the information in the See Also section

SAS: uses methods for non-full rank matrices, equiv. to dropping last column
JMP: uses “effects” coding, +1, 0 or −1 and drops the last column

Can request indicator parameterization (drop last column)

R: group X0i X1i X2i X3i predicted value
a 1 0 0 β0 = µa
b 1 1 0 β0 + β2 = µb
c 1 0 1 β0 + β3 = µc

SAS: group X0i X1i X2i X3i predicted value
a 1 1 0 β0 + β1 = µa
b 1 0 1 β0 + β2 = µb
c 1 0 0 β0 = µc

JMP: group X0i X1i X2i X3i predicted value
a 1 1 0 β0 + β1 = µa
b 1 0 1 β0 + β2 = µb
c 1 -1 -1 β0 − β1 − β2 = µc

Problem: All β’s have different estimates in R, SAS, or JMP !!
Example: 3 groups, means are Y 1 = 5, Y 2 = 10, Y 3 = 9

Parameter JMP R SAS
β0 8 5 9
βa -3 – -4
βb 2 5 1
βc – 4 –
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NOT GOOD. Estimates of β’s depend on arbitrary choice of parameterization
My advice: don’t look at estimates of β’s in ANOVA models

In R, don’t look at summary() output
unless you understand how to interpret the coefficients

SAS and JMP: don’t show the estimates unless you specifically request them

Estimable functions:
Good news: some quantities, such as group means, difference in means,

are same for all three choices (JMP, R, or SAS)
Estimable function: an estimate that does not depend on arbitrary choices

Some estimable functions:
µa, µa − µb, µa − (µb + µc)/2

Some non-estimable functions:
β1, µa − (µb + µc)

If software tells you ’non-est’, either
wrote the wrong quantity (bad contrast or estimate statement)
wrote the wrong model
or the data is insufficient to fit the model
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